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Abstract: The methods that were employed in this paper analyzed HIV data. The aim was to evaluate the evolution 

of HIV positive patients to bring out some significant factors associated with this pathology on individuals in 

Kiambu county, Kenya. Many clinical situations can be described in terms of the conditions that individuals can be 

in, how they can move among such states (transitions), and how likely such moves are (transition probabilities). 

State transition models were monitored by serial measurements of CD4 cells per unit volume (     of blood in an 

HIV patient as a tool for modeling HIV disease progression. WHO disease staging system for HIV infection was 

used to analyze data. HIV progression was analyzed through the application of a four state Markov model with 

reversible transitions. Some of the major findings of the study were that patients presenting with a CD4 count 

between 200 and 349 had a far lower chance of immune recovery and a significant chance of immunosuppression 

compared to patients of a higher CD4 count. Transition probabilities from states 1, 2, and 3 into state 4 increased 

as time progressed. The estimated total length of stay in state 1 was longer than state 2 and 3 respectively. The rate 

of decline in CD4 count decreased at lower levels of the indicator. 
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1. INTRODUCTION 

The staged Markov model is a useful way of describing a process in which an individual move through a series of states 

in continuous time. Survival analysis is the simplest two-state model where individuals remain alive until an observed or 

censored time of death. Homogeneous Markov models are the most appropriate models since the relationship between 

transition probabilities and transition intensities are easy to determine. It is often useful for a model to include the duration 

of time spent in a certain state before it transits to another state. When considering different staged models, there are 

various related tools that were used to evaluate the data. Likelihoods, intensities or hazards, transition probabilities, CD4 

counts, and distributions are some of the tools that were used to model the data discussed in this project. This study has 

analyzed HIV progression using CD4 counts intervals of six months since enrolment on ART with the objective of 

investigating the probabilities of transitions to lower CD4 counts and estimating the average stay in the CD4 count states. 

2. STATEMENT OF THE PROBLEM 

Standard survival analysis techniques like Kaplan Meier survival curves and Cox regression models can be used when one 

wishes to study the time until a specified event occurs. However, this does not describe a sequence of events and fails to 

utilize all the information that longitudinal data can provide if multiple events are studied. This study discusses the 

developments of homogeneous Markov models in HIV progression. One may examine the occurrence of clinical events 

which occur early in HIV infection or the values of biological markers as markers of disease progression. The most 

widely used marker of HIV progression is the CD4 lymphocyte count, which plays a crucial role in the immune system 

and is used to determine when ART should commence. When an individual loses CD4 cells he or she is more vulnerable 

to opportunistic infections. In this project, a model with state structure based on intervals of CD4 count and death as an 

absorbing state was used. 
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3.   LITERATURE REVIEW 

The desirability of a descriptive tool for censored survival data, free of parametric assumptions, had been recognized for 

decades. During the 1950s, well established demographic and actuarial techniques were presented to the medical-

statistical community in influential surveys such as those by Berkson and Gage (1952). The penetrating study of Kaplan 

and Meier (1958), the fascinating genesis of which was chronicled by Breslow et al (1991), eliminated in principle the 

need for these approximations in the common situations in medical statistics where all survival and censoring times are 

known precisely.The homogenous Markov staged models are time-continuous models for which the transition probability 

only depends upon the current state and has constant transition hazards for the state. In medical research, discrete 

observation times are generally used. The state that the patient is in at the observation is the only thing known. The 

researcher may know that there has been a transition to a new state but does not know when in that interval or time it 

occurred. Thus we consider homogeneous Markov models with interval censoring. 

In 2011, Tarylee used the msm package to study the application of multistate Markov models to HIV disease progression 

in South Africa. She used a model with state structure based on four intervals of CD4 count and ARV initiation an 

absorbing state. The model was successfully fitted to data from the “Sinikithemba” cohort, consisting of 451 HIV positive 

individuals residing in Durban, South Africa. Reverse transitions were incorporated into the model. The rate of CD4 count 

decline was examined and predictions of the trajectory of patients were made through the use of transition probability 

matrices. The likelihood is calculated from the transition probability matrix ( )P t . For a time-homogeneous process, the 

(r, s) entry of ( )P t ,    (t), is the probability of being in state s at a time t + u in the future, given the state at time u is r. It 

does not say anything about the time of transition from r to s, indeed the process may have entered other states between 

times u and t + u.  ( )P t can be calculated by taking the matrix exponential of the scaled transition intensity matrix (Cox 

and Miller,1965) 

( )P t = Exp (t Q )  

The matrix exponential Exp is different from a scalar exponential. The exponential of a matrix is defined by the same 

"power series" Exp(X) = 1 + X²/2! +   /3! + … as the scalar exponential, except that each term    in the series is defined 

by matrix products, not element-wise scalar multiplication.  For simpler models, it is feasible to calculate an analytic 

expression for each element of ( )P t in terms of Q .  

A model is governed by a transition intensity matrix Q . With an assumption that the patient can advance or recover from 

consecutive states while alive, and die from any state, the model with four states is given by 
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4. RESEARCH METHODOLOGY 

The conditional probability of entering state j at time t, given the system was in state i at time 0 is given by 

     (t) = P(X (t) = j| X (0) = i) for alli, j   S and t 0     

The quantities    (t) are called the transition probabilities, and form a matrix ( )P t called the transition probability matrix. 

Hence for a CTMC with n possible states we can define 
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We are now able to describe the behavior of a CTMC using the exponential distribution property.  

Suppose that once a system enters state iat time t it remains there for an exponentially distributed period of time with 

parameter  , where     0, and then jumps to state j (j i ). It will be noted that despite the assumption of time 

homogeneity, the state specific times are assumed to have separate exponential distribution rates thereby allowing state 

heterogeneity. 

5. FINDINGS 

 

Figure 1.Plot of the expected probability of survival versus time from transient states 

In figure 1, Survival is defined as not entering the absorbing state. This shows that a four year survival advanced 

immunosuppression is approximately 0.86 as opposed to 0.90 with mild and 0.92 without a significant 

immunosuppression. 

The transition intensity matrix is given by 

 

 

These are calculated as  
  

 ̂  
 where  ̂   is the     diagonal entry of the estimated transition intensity matrix Q . 
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The transition probability matrix ( )P t is evaluated below at times 1, 2, 3, 4, 5, 6, and 7 years. As time progressed the 

probability for transitions to the absorbing state increased and the probability of immune recovery decreases. 
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Interpretation of the transition probability matrix 

Transition probabilities from states 1, 2, 3 into state 4 (absorbing state) increases as time increases. For example 

   (1) = 0.03098 while    (7) = 0.2173 

   (1) = 0.06373 while    (7) = 0.2502 

A patient presenting with 200⩽ CD4 count<349 has a 25% chance of being absorbed within seven years. 

6.   CONCLUSION AND RECOMMENDATION 

Based on the findings of the study the following conclusions were made at 95% confidence limits: The study reveals that 

a patient presenting with 200⩽ CD4 count<349 has a 25% chance (0.1966, 0.4042) of being absorbed within seven years. 

It is also clear that transition probabilities from states 1, 2, and 3 increases as time increases. For example    (1) = 

0.03098 (0.02297, 0.07481) while    (7) = 0.2173 (0.1683, 0.3987).This model has been applied to one health facility 

and in one county. Since counties in Kenya are unique, it will be important to apply the model using datasets from each 

county for comparison of effects of covariates on process parameters accurately if state transitions are observed exactly. 
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